Covalency in Highly Polar Bonds. Structure and Bonding of Methylalkalimetal Oligomers (CH3M)n (M = Li-Rb; n = 1, 4).

نویسندگان

  • F Matthias Bickelhaupt
  • Miquel Solà
  • Célia Fonseca Guerra
چکیده

We have carried out a theoretical investigation of the methylalkalimetal monomers CH3M and tetramers (CH3M)4 with M = Li, Na, K, and Rb and, for comparison, the methyl halides CH3X with X = F, Cl, Br, and I, using density functional theory (DFT) at BP86/TZ2P. Our purpose is to determine how the structure and thermochemistry (e.g., C-M bond lengths and strengths, oligomerization energies) of organoalkalimetal compounds depend on the metal atom and to understand the emerging trends in terms of quantitative Kohn-Sham molecular orbital (KS-MO) theory. The C-M bond becomes longer and weaker, both in the monomers and tetramers, if one descends the periodic table from Li to Rb. Quantitative bonding analysis shows that this trend is not only determined by decreasing electrostatic attraction but also, even to a larger extent, by the weakening in orbital interactions. The latter become less stabilizing along Li-Rb because the bond overlap between the singly occupied molecular orbitals (SOMOs) of CH3(•) and M(•) radicals decreases as the metal ns atomic orbital (AO) becomes larger and more diffuse. Thus, the C-M bond behaves as a typical electron-pair bond between the methyl radical and alkalimetal atom, and, in that respect, it is covalent. It is also shown that such an electron-pair bond can still be highly polar, in agreement with the large dipole moment. Interestingly, the C-M bond becomes less polar in the methylalkalimetal tetramers because metal-metal interactions stabilize the alkalimetal orbitals and, in that way, make the alkalimetal effectively less electropositive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly polar bonds and the meaning of covalency and ionicity--structure and bonding of alkali metal hydride oligomers.

The hydrogen-alkali metal bond is simple and archetypal, and thus an ideal model for studying the nature of highly polar element-metal bonds. Thus, we have theoretically explored the alkali metal hydride monomers, HM, and (distorted) cubic tetramers, (HM)4, with M = Li, Na, K, and Rb, using density functional theory (DFT) at the BP86/TZ2P level. Our objective is to determine how the structure a...

متن کامل

Bonding in methylalkalimetals (CH(3)M)(n) (M = Li, Na, K; n = 1, 4). Agreement and divergences between AIM and ELF analyses.

The chemical bonding in methylalkalimetals (CH(3)M)(n)() (M = Li-K; n = 1, 4) has been investigated by making use of topological analyses grounded in the theory of atoms in molecules (AIM) and in the electron localization function (ELF). Both analyses describe the C-M bond as an ionic interaction. However, while AIM diagnoses a decrease of ionicity with tetramerization, ELF considers tetramers ...

متن کامل

Table salt and other alkali metal chloride oligomers: structure, stability, and bonding.

We have investigated table salt and other alkali metal chloride monomers, ClM, and (distorted) cubic tetramers, (ClM)(4), with M = Li, Na, K, and Rb, using density functional theory (DFT) at the BP86/TZ2P level. Our objectives are to determine how the structure and thermochemistry (e.g., Cl-M bond lengths and strengths, oligomerization energies, etc.) of alkali metal chlorides depend on the met...

متن کامل

Redetermination of Crystal Structure of N,N'-bis (2-Hydroxybenzylidene)-2,2-Dimethyl-1,3-Propanediamine

The structure of N,N'-bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine, C19H22N2O2, has been studied at low temperature (120K) by means of single-crystal X-ray diffraction. Solving the structure shows an orthorhombic unit cell, with P212121 space group, Z = 4, a = 6.1046 (4) Å, b = 15.8349 (11)</e...

متن کامل

Inductive Effect of Bioactive Intermolecular Hydrogen Bonding Complex of 1,2,4,5 –Tetrazine and Inorganic Acid by NMR and QTAIM

In this paper, NMR and QTAIM analysis for three substituted of T2SA complex was investigated in the gas and four solvents at DFT level. Intermolecular O–H…N hydrogen bonds between 1,2,4,5-Tetrazine and Sulphurous acids enhance the stability of complex.1,2,4,5-Tetrazine is a highly reactive diene for [4+2] inverse-Diels–Alder cycloaddition processes and an excellent precursor to attain the pyrid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 2 4  شماره 

صفحات  -

تاریخ انتشار 2006